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ABSTRACT 

This paper initiates an investigation which seeks to explain elementary definabil- 
ity as the classical results of mathematicallogic (the completeness, compactness 
and L6wenheim-Skolem theorems) explain elementary logical consequence. 
The theorems of Beth and Svenonius are basic in this approach and introduce 
automorphism groups as a means of studying these problems. It is shown that 
for a complete theory T, the defimtbility relation of Beth (or Svenonius) yields 
an upper semi-lattice whose elements (concepts) are interdefinable formulas of 
T(formulas having equal automorphism groups in all models of T). It is shown 
that there are countable models .4 of T such that two formulae are distinct 
(not interdefinable) in T if and only if they are distinct (have different automor- 
phism groups) in .4. The notion of a concept h being normal in a theory T is 
introduced. Here the upper semi-lattice of all concepts which define h is proved 
to be a finite lattice - -  anti-isomorphic to the lattice of subgroups of the corre- 
sponding automorphism group. Connections with the Galois theory of fields 
are discussed. 

1. Introduction 

In 1932 all the basic results concerning the notion of elementary logical deduc- 

tions were available; namely, the theorems of Skolem-L6wenheim, Herbrand and 

G6del. Four additional years of investigation of the notion of algorithm brought 

about the solution of Hilbert's decision problem of mathematics by Church and 

(independently and almost simultaneously) Turing. A few years later the com- 

pactness theorem for elementary logic must have been clear to several people. 

At this time it might have seemed that most of the basic problems of elementary 

axiom systems were solved. A more careful observer however, upon reading the 

papers of Tarski 1-13, 14], might have wondered about the existence of general 

theorems which would explain elementary definability as the above theorems 
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explain the basic properties of elementary logical consequence. One such theorem, 

the completeness, in the sense of definability, of elementary logic was proved by 

Beth in 1953 [1]. Also, around this time, Craig, in his doctoraI dissertation, 

proved what is now known as the interpolation lemma (or separation lemma). 

Craig's lemma [6] and Beth's theorem went unnoticed for a time. In 1956 the 

basic importance of Craig's lemma became apparent: first, it admits Beth's 

theorem as an easy corollary and second, it sounds more impressive in its model- 

theoretic version. About this time also, Robinson's consistency lemma [11], 

which is intimately related to Craig's 1emma, appeared. The relationship between 

these definability results may be traced on various levels, i.e., there are stronger 

forms which may be proved by using model-operators like ultrapowers, etc. 

For a discussion of these various levels, see Buchi and Danhof [3]. 

In 1959 Svenonius [12] published a further result on elementary definability. 

Just as with the earlier results of Beth and Craig, logicians seem slow in recognizing 

Svenonius' theorem as a basic tool in the theory of definability, perhaps because 

it is not generally known to be available. 

With the appearance of Klein's Erlangerprogramm in 1872 [10], it became 

apparent that automorphism groups are a most useful means of studying mathe- 

matical theories. In a more rigorous model-theoretic manner, these ideas have 

been discussed in the case of various elementary mathematical theories by Buchi 

and Wright (see [4, 5, 15]). It is not surprising that both the theorems of Beth 

and Svenonius are about the automorphism groups of the models of a theory. 

In Buchi [2], Beth's theorem is restated as a general result on relative categoricity 

and Svenonius' theorem is used to establish a basic result on the Galois group of 

normal concepts. Here these matters are carried out in detail and further results 

leading toward a theory of elementary definability are added. 

2. Preliminaries 

We assume familiarity with the notion of an elementary theory (class) T = T(R) 

with primitives R and equality. We frequently identify a theory T(R) with the 

class of models (A, R)  of T (and assume this class to be closed under isomor- 

phism). For a system A, ~(A) denotes the set of all sentences true in A (elementary 
theory of A). A theory T(R) is pseudo-elementary if there is an elementary theory 

T(R, S) such that T(R) is the class of systems (A, R) for which there is an S with 

(A, R, S) e T(R, S). For a system A, ~A denotes the group of automorphisms of 
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A; A ~ A '  indicates that A and A' are isomorphic. A formula is called an R'- 

condition if the predicate R' (primitive or defined) is its only extralogical constant. 

For a system A, a one-one mapping t~ between two subsets of A is called a partial 

R'-automorphism if any two sequences of elements which correspond to each 

other by ~b satisfy the same R'-conditions. "(VA)r. . ."  should be read as "for all 

models A of T, . . ." .  An elementary formula �9 = ~ (R, xl, ..-, xn) of T(R) defines 

an elementary concept of T as follows: For any system A = <A,R), 

(I)(<A, R>) = <A, (21, "", 2 ,)0) .  

Thus, an elementary concept c of  T (c e ~(T))  is a mapping defined by an 

elementary formula from a species into a (possibly different) species. Note that 

A and cA have the same domain. Moreover, for any such concept and any trans- 

formation $ of A we have: 

i) c~cA = c~bA. 

For the purpose of comparing elements of ~-(T), we have the following two 

quasi-orders: 

1) c < 1 d(T) .=_. (VA,A')TdA = dA' -~ cA = cA' 

2) c <2d(T) .=-. (VA)TrdA ~_ •cA. 

It is easy to see that c < t d(T) implies c <2 d(T). For T pseudo-elementary, 

Craig's extension [7] of Beth's theorem may be stated as follows: 

ii) c <= 1 d ( T ) .  - .  there is an elementary concept d' such that 

(VA)T cA = d' dA. 

Similarly, with T again pseudo-elementary, Svenonius' theorem [-12] may be 

generalized to: 

iii) c __<2d(T).=. there are elementary concepts dl,... , d n such that 

(VA)r (cA = d~dA V "'" V cA = dndA). 

Note in particular that if T is a complete elementary theory, then for all c, 

d e  ~ ( T ) ,  c < 1 d(T) .=. c <=2 d(T). In the sequel, we restrict our attention to 

complete theories and let <= denote -<1 (or equivalently <= 2). For h ~ e~(T), let 

~ ( T , h )  = {c~ ec(T); h < c(T)}. < is a quasi-order on e~(T, h) and if ~ is defined 

by c ,,~ d .  - .  c < d(T) A d <= c(T), then ~ is an equivalence relation on e~(T, h). 

ec(T, h) will denote the set of equivalence classes (relative to the relation ~) .  

< induces a partial order on these classes. The partially ordered set has ( 0 - )  the 
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concept h and (1 - )  the primitive concept R. Hereafter, we often identify a concept 

with its equivalence class. For  c, c 'eec(T,h)  defined by O(xl, ..., x,) and 

r we let c |  ""x,Yl ""f~,,) (~ A ~ ' ) .  | is a 1.u.b. in ec(T,h) 

and consequently ec(T, h) is an upper semi-lattice with 0 and 1. Note that if the 

concept ' = ' is defined by the formula xl = x2, then for any concept c, ' = ' 

< c(T). We denote ec(T, ' =  ') by ec(T). 

For a structure A of T, we write c< d(A) if xdA ~_ tccA. Note c < d(T) implies 

c < d(A). By imitating the above construction, we get, for each model A of  Tan d  

each h ~ ~ ( T ) ,  an upper semi-lattice ec(A, h) - -  a subsystem of ec(T, h). 

It can be shown that ec(T) need not be a lattice. For  example, let 

T = z (A ,A , f2 ,a  ) 

where a ~ A, f~ is a partial one-one unary function from As = {fi"(a); n >= 0} onto 

A s -  {a} for i = 1,2, andf~(a)  =f~(a) iff n = m and n is even (i.e., A 1 U A 2 =  

A and A I ~ A z = (fi "(a)," n even}). One can then show g.l.b. (fl(x) = y, f2(x) = y} 

does not exist (such a g.l.b, would be definable from each off1 and fz). 

Several questions suggest themselves at this point: What is the relation between 

ec(T) and the theory T? When is ec(T, h) finite?, etc. In the following section we 

describe a sufficient condition for the finiteness of ec(T, h). 

3. The following lemma expands only slightly the basic result used in extending 

Beth's theorem to Svenonius' theorem and the proof employs the ideas of that 

proof  (see Svenonius [12]). 

LEMMA 1. Given elementarily equivalent systems A and A', concepts c and 

c' and partial automorphisms q~ (qS') of cA (c'A'), there is an elementary ex- 

tension B of  A and A' and partial automorphisms tr (tr') of  cB (c'B) which extend 

dp (?p') such that the domain (or range) of  tr (a') is the image of  A(A') in B. 

Our first theorem shows that for T complete, the study of  ec(T, h) reduces to 

that of ec(A, h) for certain countable models of  A of  T. 

THEOREM 1. I f  T is complete and h ~ ec(T), there is a countable model A of  

T such that ec(T, h)= ec(A, h). 

OUTLINE OF PROOF. ec(T,h) is countable (its elements are represented by 

formulas of T). Let {~i}~ < ~ ennumerate all pairs (c, c') ~ (ec (T, h)) 2 such that 

c < c'(T). Then for each i < 09 and ~ = (c~, c'~) there is a model At of  T such that 

xc~ A s ~ xqA~; moreover we may assume Ai countable. Now using Lemma 1. 

one constructs models B, of  T and partial mappings qS~such that B o = Ao, B,+t  
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is an elementary extension of Bn and A~+I, and ~i~+l(i = O, ... n + 1) is a partial 

automorphism of  ciB~ + 1 but not of  c" Bn + 1. As n is even (odd) the domain (range) 

of  ~b~ '+1 (i < n) is the image of Bn in B,+I and the domain (range) of  ,~n+l W n +  l 

is the image of  An+~ in B~+I. A = u B ~  is now the desired system since for 

tki = u qS~' we have q~i e xciA / xc'i A for i < o9. Thus c < d(T)  . = .  c < d(A) and 

consequently ec (T,h) = ec(A,  h). 

DEFINITION. The theory T is said to be normal  relative the e lementary  concept 

h (h <a T) if: 

( V A , A ' ) r A  ~- A '  A hA = hA '  .-+. r.A = xA ' .  

Models A and A' such that A ~ A' and hA = hA '  (i.e., there is an automorpism 

of  hA = hA '  which takes A onto A') are called h-conjugate and we write A 

_- A'(h). 

LEMMA 2. h <1 T . = .  (VA)rxA .~  xhA  (i.e., xA is a normal  subgroup o f  xhA) .  

PROOF. Note that by definition, 

h.~ T . = .  ( V A , A ' ) r A  = A' (h)  .-+. xA = xA ' ,  

or equivalently, (VA)r q~hA = h A / ~  ~kA = A .-+. ~?p A = ~A.  However, this last 

condition may be restated as (VA)T ~b e xhA A ~k ~ xA  .--+. c~- l~dp ~ xA.  

THEOREM 2. I f  h-~ T, there is a number  n and e lementary  concepts d , ,  . . . , d  n 

such that f o r  any  model  A o f  T, 

A "~ A ' (h )  .-+. A '  = d tA  V "'" V A '  = dnA 

and in part icular ,  Gh(A ) = xhA /xA  has order < n. 

PROOF. Since h<~ T, we have 

a) (VA)rA __ A'(h) .-+. q~A = A -, ~bA' = A'. 

Recall that A -~ A'(h) means hA = hA '  /~ (3~?) ~ A  = A ' .  Since h is elementary, 

this is a pseudo-elementary proposition. Since T = T(R)  is elementary, it follows 

that A c T  A A ~_A'(h)  is a pseudo-elementary theory T ' ( R , R ' ) .  Now (a) is 

just the other assumption of  (iii) (Svenonius' theorem) and hence there are 

elementary concepts da , . . . ,d  n such that 
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A ~ T A A ~ A ' ( h ) . ~ . A ' = d l A  V ' " V  A ' = d , , A .  

This establishes the first part of Theorem 2. 

To see that Gh(A ) is finite, let A ~ T. Since, by the above, there are at most n 

different h-conjugates A ~,.-., An of A, we have 

b) q5 E xhA ~ c~A = A t V "" V c~A = An. 

Let a, p ~ xhA. Then by (b), we have 

c) a - l p s x A  .=.  aA = p A =  AI V "'" V aA = pA =An.  

From (c), one sees the relation a-Xp e xA is an equivalence relation on xhA,  of 

index < n. Moreover, it is the congruence on xhA relative to the normal subgroup 

xA. Therefore, Gn(A) has < n members. 

We give two examples where h<~ T. T1 has n unary predicate letters R1,-.., R n. 

Axioms for T1 insure that in any model of T1, the interpretations of RI, ..., R, 

partition the domain of the model into n disjoint equivalence classes. Let h b~ 

given by the formula which defines the resulting equivalence relation. It is easy to 

show h ~  T1. Each model of T1 has < n ! h-conjugates and equality holds if all of 

the equivalence classes have the same cardinality. In the latter case Gh(A ) is just 

the symmetric group on n objects. 

As a second example, let F be a finite (algebraic) extension of its prime subfield 

and G = F(OI,...,On) a finite extension of F. Let T 2 be all sentences true in 

G = (G, F(G), OD'",  0,)  where F(G) consists of 0, 1, + ,"  and the elements needed 

to generate F. For A = ( A , F ( A ) , a l ,  . - . ,a , )  a model of T2, let hA = ( A , F ( A ) ) .  

Using basic facts about fields, we again have h-~ T 2. 

THEOREM 3. l f  h<~ z(A), then there is an order anti-isomorphism f rom ec(A, h) 

onto the lattice o f  subgroups o f  Gh(A ). Consequently, applying Theorem 2, 

ec(A,h)  is a finite lattice. 

PROOF. For c ~ ec (A, h), c ~ xcA ~teA c_ Gh(A). This correspondence is clearly 

one-one, for xcA /xA = ~c 'A/xA .=.  xcA = rc 'A  .=.  c = c'. Also, c < c'(A) 

.= .  K c ' A ~ x c A  .=.  Kc 'A/xA ~_xcA/xA.  We are to show that the mapping is 

onto. By Theorem 2, there are elementary concepts d~, "",dn such that 

1) A ~-A'  /~ hA = hA'  . ~ .  A '  = d~A V "'" V A '  = d~A. 
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Moreover ,  we may take d~A =~iA where Gh(A ) = {q~i; i = 1,..., n}. One also has 

(see (i)) that  if  ~b~qSj = ~bk, then djdiA = dkA and if ~b-1 = ~bj, then djd~A = d~djA 

= A  (we take d x A = A ,  i.e., ~bx is the identity). Thus, D = { d ~ ; i = l , . . . , n }  

restricted to {d~A; i = 1, ..-, n} forms a group anti- isomorphic to Gh(A ). 

For  di, d ieD,  ~di,  d~/h dj and d~ V dj are defined in the obvious manner.  

For  each f :  (d2, . . . ,d,} ~ {d 2, ,-~ d2,...,d n, ~d,}  such that  f ( d j ) e  {dj, ~ dy} for  

j = 2 , . . . , n ,  let 

2) d[ = d,/~ (A~=2,...,.f(dj)d,); i < n. 

We have, 

3) a ~ djd~A . - .  c~7 t (a) ~ dja. 

F r o m  (3), dy(A) = 0 . - .  dff(A ) = 0. We s a y f #  0 i f  d{(A) # 0. For  i = 1, . . . , n ;  

d *  = |  , o d { and for H ~_ Gh(A), 

(o 
Note  xdHA ~- xhA ~ d n ~ ec (A, h). We assert H = xdnA/xA.  I f  a e H,  then 

a = q5 k for some k < n. Also, trdnA = dnA since if q~, e H, aa*A = c~ka*A = d*dk a 

= (didk)*A = d*A for  qSj = $kq~i~H. Thus, H~_xdnAdxA. For  the converse, 

note that  d*A c3 d*A = 0 for i # j .  I f  tr ~ xdnA/xA,  then a = ~bj for  some j < n. 

Now for a ~ d* A, 

aaE ( V , d ~ )  

i.e., tra e d~4 for some ~b i e H. By (3), a ~ d*A where ~b k = ~bf l~b i and hence k = 1 

by the disjointness property noted above. Thus,  ~bj = ~b~ and tr = ~bje H. This 

proves the theorem. 

Combining Theorems 1 and 3, we have; 

THEOREM 4. I f  h< T (T complete), then ec(T,h) is anti-isomorphic to the 

lattice of  sub9roups of  Gh(A ) for  some countable model A of  T (and hence is a 

finite lattice). 

Returning to the earlier example T 2 from fields, since h<~ T2, Theorem 3 applies 

here. Moreover ,  if G is assumed to be the splitting field of  a separable polynomial  

over F, then G=F(O), a simple extension of  F, and Gh(G ) is just the group of  

automorphisms of  G fixing F. In this case also, there is a one-one correspondence 
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between ec(G, h) and subfields J ,  F _~ 5 _~ G. For  if F _~ J _~ G, then J = F((5) 

for some (5 ~ G. We let cjG = (G,  F(G), (5); then xcjG is the group of automor- 

phisms of G over J.  Also, if cj --- c j,, then J = J ' .  Conversely, given c ~ ec(G, h), 

let J = {a ~ G; qSa = a for all q5 E ~:cG = H}. Then c s < c(G) and from the proof  

of  Theorem 3, we may write c -- V n (x -- ~i(O)) Q h. Now in T2, V n(X = (oi(0)) 

�9 - . f ( x )  = 0; it follows that the coefficients o f f ( x )  are in J. Any element of  ~ccsG 

fixes f ( x )  and hence fixes c. Thus, c < cs(G ). It  follows that there is a one-one 

correspondence between the subgroups of  ~ch(G) and subfields J ,  F _c j _c G. (cf. 

Fundamental theorem of  Galois theory). 

REMARK. ]n an attempt to keep the presentation as smooth as possible, our 

definition of elementary concept in w was less general than it might have been. 

As an example of  how this notion might be extended, for ~ = ~ ( R , S ,  x l ,  ..., x,)  a 

formula of  T ( R S ) ,  we can let ~ ( ( A , R , S ) ) =  ( A ,  R,(21, ...,fcn)~). This version 

subsumes the earlier notion and the theorems stated above remain intact�9 In this 

setting the restriction in example 2 that F be a finite extension of its prime field 

can be removed; F can now be any field�9 

We conclude with a final observation reminiscent of  the Galois groups of fields�9 

Let h < T, A be a model of  T and c e ec (T, h). Then for a ~ xhA,  xcaA = a ( x c A ) a -  1. 

Now rcA  = a(xcA)a  -1 for all a E xhA . =. xcA < xhA .= .  A ~_ A ' (h )  . ~ .  xcA 

= xcA' .  Accordingly, we write 

h-< c(T) . - .  ( V A , A ' ) r A  "~ A ' (h)  . ~ .  xcA = xcA' .  

From the above, h <  c(T) .=- .  (VA)T ~ccA.< x h A .  =.  (VA)T(VCr)~hZ xcaA=~ccA. 

NOW if rccA.< xhA,  then i c c A / x A <  xhA/rcA. In this case, by the law of homo- 

morphism for groups, 

xhA /xcA ~ (~chA / x A ) / ( x c A  /xA).  
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